Nonparametric estimation of mean-squared prediction error in nested-error regression models
نویسنده
چکیده
Nested-error regression models are widely used for analyzing clustered data. For example, they are often applied to two-stage sample surveys, and in biology and econometrics. Prediction is usually the main goal of such analyses, and mean-squared prediction error is the main way in which prediction performance is measured. In this paper we suggest a new approach to estimating mean-squared prediction error. We introduce a matched-moment, double-bootstrap algorithm, enabling the notorious underestimation of the naive mean-squared error estimator to be substantially reduced. Our approach does not require specific assumptions about the distributions of errors. Additionally, it is simple and easy to apply. This is achieved through using Monte Carlo simulation to implicitly develop formulae which, in a more conventional approach, would be derived laboriously by mathematical arguments.
منابع مشابه
Nonparametric Estimation of Mean-squared Prediction Error in Nested-error Regression Models by Peter Hall
Nested-error regression models are widely used for analyzing clustered data. For example, they are often applied to two-stage sample surveys, and in biology and econometrics. Prediction is usually the main goal of such analyses, and mean-squared prediction error is the main way in which prediction performance is measured. In this paper we suggest a new approach to estimating mean-squared predic...
متن کاملMean-Squared Error Analysis of Kernel Regression Estimator for Time Series
Because of a lack of a priori information, the minimum mean-squared error predictor, the conditional expectation, is often not known for a non-Gaussian time series. We show that the nonparametric kernel regression estimator of the conditional expectation is mean-squared consistent for a time series: When used as a predictor, the estimator asymptotically matches the mean-squared error produced b...
متن کاملSmall area estimation using a nonparametric model-based direct estimator
Nonparametric regression is widely used as a method of characterising a non-linear relationship between a variable of interest and a set of covariates. Practical application of nonparametric regression methods in the field of small area estimation is fairly recent, and has so far focussed on the use of empirical best linear unbiased prediction under a model that combines a penalized spline (p-s...
متن کاملVariable data driven bandwidth choice in nonparametric quantile regression
The choice of a smoothing parameter or bandwidth is crucial when applying nonparametric regression estimators. In nonparametric mean regression various methods for bandwidth selection exists. But in nonparametric quantile regression bandwidth choice is still an unsolved problem. In this paper a selection procedure for local varying bandwidths based on the asymptotic mean squared error (MSE) of ...
متن کاملBayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function
In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...
متن کامل